Zane Weissman

Cybersecurity || Microarchitectural Security || FPGA || Embedded Computing 488 Plantation St, Worcester MA 01602 +1-510-407-1958 | zweissman@wpi.edu | www.zaneweissman.net

I am a Ph.D. researcher at Worcester Polytechnic Institute studying microarchitectural security threats to modern cloud systems. I have published two papers presenting new threats posed by FPGAs in the cloud, and I have substantial experience with embedded systems. I am currently looking for positions in cybersecurity, computer architecture, FPGA implementation, or embedded systems design.

Education

Worcester Polytechnic Institute (WPI)	Worcester, MA
 Ph.D. in Electrical and Computer Engineering Research assistant under supervision of Prof. Berk Sunar Teaching assistant for graduate and undergraduate classes 	2019 - Present
M.S. in Electrical and Computer Engineering	2017-2019
B.S. cum laude in Electrical and Computer Engineering	2015-2019

Skills and Knowledge

Programming • C/C++, Assembly (x86, ARM, SIMD), Matlab, Python, R, (System)Verilog, LaTeX, Bash and Math

- Embedded systems programming including RTOS, task scheduling, interrupts, semaphores and data sharing, timers and clocks, serial interfaces, ADCs and DACs, digital I/O
- Linux development including kernel driver development and kernel image compilation
- Private and public key cryptography including RSA, AES, ECDSA; security protocols including Diffie-Helman key exchange, SSL/TLS, WEP, WPA
- Machine learning including DNN, CNN, SVM, decision tree and random forest, KNN, regression, bootstrap aggregating, dimensionality reduction and feature extraction

Electronics and Design • Microarchitectural design including inclusive and non-inclusive cache organization, pipelines, branch prediction, parallelism, out of order execution and Tomasulo's algorithm

- **Microarchitectural vulnerabilities** including Spectre and Meltdown/MDS-class speculative execution vulnerabilities, cache timing side-channel techniques, and common defenses and countermeasures in software, firmware, and hardware
- Digital and analog circuits, VLSI design, function generators and oscilliscopes, soldering, serial and parallel interfaces, discrete, continuous, and probabilistic signals

Software tools GNU Toolchain, Git, Eclipse, TI Code Composer Studio, Xilinx Vivado, Intel Quartus, Synopsys Design Compiler, QEMU, libvirt, Linux distributions based on Debian, Red Hat, and Arch

Experience

Worcester, MAPh.D., Vernam Cybersecurity LabJan 2019-PresentResearch assistant under supervision of Prof. Berk Sunar

Jackhammmer: a powerful and stealthy Rowhammer implementation for FPGAs

- Designed Jackhammer, an FPGA implementation of a **Rowhammer** attack that causes twice as many hardware faults as a comparable CPU-based attack.
- Reverse-engineered the memory and cache subsystems of two heterogeneous FPGA-CPU compute

platforms based on the PCIe-connected Intel Arria 10 GX FPGA.

• Discovered a fault-injection vulnerability in WolfSSL's RSA library and demonstrated a practical attack with Jackhammer with 25-200% performance gains over CPU-based Rowhammer exploits.

IOTLB-SC: a new side-channel cache attack against PCIe memory address translation hardware

- Hypothesized and proved the existence of **IOTLB-SC**, a side-channel vulnerability in IOTLBs, the translation caches of the hardware units that perform peripheral-to-CPU memory address translation.
- Developed a kernel driver to manipulate the IOTLB and assist with debugging the side-channel.
- Used a custom FPGA function to collect traces from a network card using the IOTLB-SC side-channel.
- Analyzed the threats that IOTLB-SC poses to hardware functions, device drivers, and applications, and proposed countermeasures for applications, cloud infrastructure, and memory translation hardware.

Microarchitectural security analysis of AWS Firecracker virtual machines

- Analyzed security model of AWS's Firecracker MicroVM designed for serverless cloud platforms.
- Tested Firecracker's defenses against MDS and Spectre microarchitectural attacks.
- Found variants of each that pose significant threats to cloud platforms using Firecracker for isolation, even using a recommended system setup with common microarchitectural defenses in place.
- Provided additional system and application security recommendations for Firecracker-based platforms.

Worcester, MA WPI Capstone Project

Aug 2018-May 2019 Modular Electronic Skateboard

- Designed onboard software for a smart, modular electronic skateboard: implemented motor control systems and data logging on remote database.
- Collaborated with hardware and database designers to ensure system interoperability.
- Presented work in a technical report, a poster, and a short presentation.

Worcester, MA Battle of the Rockets

Jan 2016-April 2017 Leader of Lander Design Team

- Managed 5 students designing and building an autonomous lander. Led development of system software and electronics. Oversaw design and manufacture of mechanical systems.
- Lander was launched from a rocket at a height of over 1000 feet and awarded 2nd place in competition.

Newark, CA Softiron Inc.

June 2016-Aug 2016 Assembly and Testing Intern

- Tested server motherboards, RAM, and other components.
- Assembled and packed server units for shipment.
- Managed parts inventory, wrote scripts to print labels, and assisted with other odd jobs.

Publications

"Microarchitectural Vulnerabilities Introduced,

Exploited, and Accelerated by Heterogeneous FPGA-CPU Platforms," in Security of FPGA-Accelerated Cloud Computing Environments, edited by J. Szefer and R. Tessier, Springer, forthcoming.

Microarchitectural Security of AWS Firecracker VMM for Serverless Cloud Platforms, under review.

IOTLB-SC: An Accelerator-Independent Leakage Source in Modern Cloud Systems, ACM ASIA CCS, 2023, forthcoming. *P*

JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms, IACR TCHES, 2020, Issue 3 *P*

Conferences

hardwear.io 2020, JackHammer: Rowhammer and Cache Attacks on Heterogeneous FPGA-CPU Platforms, D. Moghimi, T. Tiemann, and Z. Weissman.

Cryptographic Hardware and Embedded Systems (CHES) 2020, JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms, <u>Z.Weissman</u>, T. Tiemann. *P*